Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ryan Dehoff
- Blane Fillingim
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Lauren Heinrich
- Michael Kirka
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Adam Stevens
- Ahmed Hassen
- Alexander I Wiechert
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- Amit Shyam
- Andres Marquez Rossy
- Bruce Moyer
- Christopher Ledford
- Clay Leach
- Costas Tsouris
- David Nuttall
- Debangshu Mukherjee
- Debjani Pal
- Gs Jung
- Gyoung Gug Jang
- James Haley
- Jeffrey Einkauf
- Jennifer M Pyles
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Md Inzamam Ul Haque
- Mike Zach
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Philip Bingham
- Radu Custelcean
- Ramanan Sankaran
- Rangasayee Kannan
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Venkatakrishnan Singanallur Vaidyanathan
- Vimal Ramanuj
- Vipin Kumar
- Vlastimil Kunc
- Wenjun Ge
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

In manufacturing parts for industry using traditional molds and dies, about 70 percent to 80 percent of the time it takes to create a part is a result of a relatively slow cooling process.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.