Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Diana E Hun
- Ilias Belharouak
- Philip Boudreaux
- Som Shrestha
- Tomonori Saito
- Alexey Serov
- Ali Abouimrane
- Bryan Maldonado Puente
- Jaswinder Sharma
- Mahabir Bhandari
- Marm Dixit
- Nolan Hayes
- Ruhul Amin
- Venugopal K Varma
- Xiang Lyu
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Aaron
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Catalin Gainaru
- Charles D Ottinger
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- Hongbin Sun
- Huixin (anna) Jiang
- James Szybist
- Jamieson Brechtl
- Jonathan Willocks
- Junbin Choi
- Kai Li
- Karen Cortes Guzman
- Kashif Nawaz
- Khryslyn G Araño
- Kuma Sumathipala
- Logan Kearney
- Lu Yu
- Mark M Root
- Meghan Lamm
- Mengjia Tang
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Natasha Ghezawi
- Nihal Kanbargi
- Paul Groth
- Peter Wang
- Pradeep Ramuhalli
- Ritu Sahore
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Singanallur Venkatakrishnan
- Stephen M Killough
- Todd Toops
- Xiaobing Liu
- Yaocai Bai
- Zhenglai Shen
- Zhijia Du

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.