Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Vincent Paquit
- Clay Leach
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Muneer Alshowkan
- Xiaohan Yang
- Akash Jag Prasad
- Alex Walters
- Andrzej Nycz
- Anees Alnajjar
- Austin Carroll
- Brian Williams
- Calen Kimmell
- Canhai Lai
- Carrie Eckert
- Chris Tyler
- Claire Marvinney
- Costas Tsouris
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Kyle Davis
- Liangyu Qian
- Mariam Kiran
- Nance Ericson
- Paul Abraham
- Ryan Dehoff
- Serena Chen
- Srikanth Yoginath
- Udaya C Kalluri
- Varisara Tansakul
- Vilmos Kertesz
- Vladimir Orlyanchik
- Yang Liu
- Zackary Snow

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.