Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Vlastimil Kunc
- Ahmed Hassen
- Anees Alnajjar
- Brian Williams
- Dan Coughlin
- Isaac Sikkema
- Jim Tobin
- Joseph Olatt
- Josh Crabtree
- Kim Sitzlar
- Kunal Mondal
- Mahim Mathur
- Mariam Kiran
- Merlin Theodore
- Mingyan Li
- Oscar Martinez
- Sam Hollifield
- Steven Guzorek
- Subhabrata Saha
- Vipin Kumar

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

A quantum communication system enabling two-mode squeezing distribution over standard fiber optic networks for enhanced data security.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.