Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Hsuan-Hao Lu
- Joseph Lukens
- Luke Meyer
- Muneer Alshowkan
- Adam Stevens
- Alex Walters
- Amy Elliott
- Anees Alnajjar
- Brian Williams
- Callie Goetz
- Cameron Adkins
- Christopher Hobbs
- Claire Marvinney
- Eddie Lopez Honorato
- Erin Webb
- Evin Carter
- Fred List III
- Harper Jordan
- Isha Bhandari
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Joshua Vaughan
- Keith Carver
- Kitty K Mccracken
- Liam White
- Mariam Kiran
- Matt Kurley III
- Michael Borish
- Nance Ericson
- Oluwafemi Oyedeji
- Peter Wang
- Rangasayee Kannan
- Richard Howard
- Rodney D Hunt
- Roger G Miller
- Ryan Dehoff
- Ryan Heldt
- Sarah Graham
- Soydan Ozcan
- Srikanth Yoginath
- Sudarsanam Babu
- Thomas Butcher
- Tyler Gerczak
- Tyler Smith
- Varisara Tansakul
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.