Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Hsuan-Hao Lu
- Joseph Lukens
- Luke Meyer
- Muneer Alshowkan
- Adam Stevens
- Alex Walters
- Amy Elliott
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Brian Williams
- Bruce A Pint
- Cameron Adkins
- Erin Webb
- Evin Carter
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Mariam Kiran
- Meghan Lamm
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Steven J Zinkle
- Sudarsanam Babu
- Tim Graening Seibert
- Tolga Aytug
- Tyler Smith
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xianhui Zhao
- Yanli Wang
- Ying Yang
- Yukinori Yamamoto
- Yutai Kato

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).