Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Amit K Naskar
- Joseph Chapman
- Jun Qu
- Nicholas Peters
- Alex Plotkowski
- Amit Shyam
- Corson Cramer
- Hsuan-Hao Lu
- James A Haynes
- Jaswinder Sharma
- Joseph Lukens
- Logan Kearney
- Meghan Lamm
- Michael Toomey
- Muneer Alshowkan
- Nihal Kanbargi
- Steve Bullock
- Sumit Bahl
- Tomas Grejtak
- Alice Perrin
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Brian Williams
- Bryan Lim
- Christopher Bowland
- Christopher Ledford
- David J Mitchell
- Edgar Lara-Curzio
- Ethan Self
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Holly Humphrey
- James Klett
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Mariam Kiran
- Marm Dixit
- Matthew S Chambers
- Michael Kirka
- Nancy Dudney
- Nicholas Richter
- Peeyush Nandwana
- Rangasayee Kannan
- Robert E Norris Jr
- Santanu Roy
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sumit Gupta
- Sunyong Kwon
- Tolga Aytug
- Trevor Aguirre
- Uvinduni Premadasa
- Vera Bocharova
- Ying Yang
- Yiyu Wang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.