Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Halil Tekinalp
- Meghan Lamm
- Vlastimil Kunc
- Ahmed Hassen
- Umesh N MARATHE
- Amit K Naskar
- Dan Coughlin
- Joseph Chapman
- Katie Copenhaver
- Nicholas Peters
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Beth L Armstrong
- David Nuttall
- Georges Chahine
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Logan Kearney
- Matt Korey
- Michael Toomey
- Muneer Alshowkan
- Nadim Hmeidat
- Nihal Kanbargi
- Pum Kim
- Sanjita Wasti
- Steve Bullock
- Tyler Smith
- Xianhui Zhao
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Brian Post
- Brian Williams
- Brittany Rodriguez
- Cait Clarkson
- Christopher Bowland
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Holly Humphrey
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Mariam Kiran
- Marm Dixit
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Robert E Norris Jr
- Sana Elyas
- Santanu Roy
- Segun Isaac Talabi
- Shajjad Chowdhury
- Subhabrata Saha
- Sumit Gupta
- Tolga Aytug
- Uvinduni Premadasa
- Vera Bocharova

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.