Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rafal Wojda
- Amit K Naskar
- Prasad Kandula
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Vandana Rallabandi
- Vincent Paquit
- Akash Jag Prasad
- Alex Plotkowski
- Arit Das
- Benjamin L Doughty
- Calen Kimmell
- Canhai Lai
- Christopher Bowland
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Holly Humphrey
- James Haley
- James Parks II
- Jaydeep Karandikar
- Marcio Magri Kimpara
- Mostak Mohammad
- Omer Onar
- Praveen Kumar
- Robert E Norris Jr
- Ryan Dehoff
- Santanu Roy
- Shajjad Chowdhury
- Subho Mukherjee
- Suman Debnath
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Zackary Snow

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.

The invention is related to the implementation of an bi-directional and isolated electric vehicle charger. The bidirectionality allows the electric vehicles to support the grid in case of disturbances thereby reducing the stress on the existing infrastructure.