Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
Researcher
- Ben Lamm
- Beth L Armstrong
- Bruce A Pint
- Christopher Hobbs
- Christopher Rouleau
- Costas Tsouris
- Eddie Lopez Honorato
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jong K Keum
- Matt Kurley III
- Meghan Lamm
- Mina Yoon
- Radu Custelcean
- Rodney D Hunt
- Ryan Heldt
- Shajjad Chowdhury
- Steven J Zinkle
- Tim Graening Seibert
- Tolga Aytug
- Tyler Gerczak
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yutai Kato

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.