Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sergei V Kalinin
- Vincent Paquit
- Akash Jag Prasad
- Anton Ievlev
- Bogdan Dryzhakov
- Calen Kimmell
- Canhai Lai
- Christopher Hobbs
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Eddie Lopez Honorato
- James Haley
- James Parks II
- Jaydeep Karandikar
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Matt Kurley III
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Rodney D Hunt
- Ryan Dehoff
- Ryan Heldt
- Stephen Jesse
- Steven Randolph
- Tyler Gerczak
- Vladimir Orlyanchik
- Yongtao Liu
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.

This invention is about a multifunctional structured packing device that can simultaneously facilitate heat and mass transfer in packed distillation, absorption, and liquid extraction columns, as well as in multiphase reactors.