Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Justin West
- Peter Wang
- Andrzej Nycz
- Kyle Gluesenkamp
- Ritin Mathews
- Blane Fillingim
- Chris Masuo
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Bo Shen
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Lauren Heinrich
- Melanie Moses-DeBusk Debusk
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Scott Smith
- William Carter
- Yousub Lee
- Akash Jag Prasad
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Beth L Armstrong
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Christopher Fancher
- Christopher Ledford
- Corson Cramer
- Craig Blue
- Dhruba Deka
- Emma Betters
- Fred List III
- Gordon Robertson
- Greg Corson
- Isha Bhandari
- James Klett
- James Manley
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Liam White
- Luke Meyer
- Michael Borish
- Navin Kumar
- Philip Bingham
- Richard Howard
- Roger G Miller
- Sarah Graham
- Sreshtha Sinha Majumdar
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Tugba Turnaoglu
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu
- Yukinori Yamamoto

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Buildings are energy intensive and contribute to carbon dioxide emissions while accounting for one-third of energy consumption worldwide. Heat pump technology can assist in electrification and decarbonization efforts.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

In wire-arc additive manufacturing and hot-wire laser additive manufacturing, wire is fed into a melt pool and melted through the arc or laser process.