Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Brian Post
- Andrzej Nycz
- Chris Tyler
- Chris Masuo
- Peter Wang
- Justin West
- Ryan Dehoff
- Vincent Paquit
- Michael Kirka
- Peeyush Nandwana
- Ritin Mathews
- William Carter
- Alex Walters
- Blane Fillingim
- Joseph Chapman
- Joshua Vaughan
- Luke Meyer
- Nicholas Peters
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Ahmed Hassen
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Christopher Ledford
- Clay Leach
- David Olvera Trejo
- Hsuan-Hao Lu
- J.R. R Matheson
- Jaydeep Karandikar
- Joseph Lukens
- Lauren Heinrich
- Muneer Alshowkan
- Philip Bingham
- Scott Smith
- Udaya C Kalluri
- Yousub Lee
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Amy Elliott
- Anees Alnajjar
- Beth L Armstrong
- Brian Williams
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Corson Cramer
- Costas Tsouris
- Craig Blue
- Diana E Hun
- Emma Betters
- Erin Webb
- Evin Carter
- Fred List III
- Gina Accawi
- Gordon Robertson
- Greg Corson
- Gurneesh Jatana
- Isha Bhandari
- James Haley
- James Klett
- James Parks II
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Keith Carver
- Kitty K Mccracken
- Liam White
- Mariam Kiran
- Mark M Root
- Michael Borish
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Richard Howard
- Riley Wallace
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Steve Bullock
- Steven Guzorek
- Thomas Butcher
- Tony L Schmitz
- Trevor Aguirre
- Tyler Smith
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.