Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Andrzej Nycz
- Steve Bullock
- Brian Post
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Ali Passian
- Chris Masuo
- Halil Tekinalp
- Meghan Lamm
- Ryan Dehoff
- Vincent Paquit
- David Nuttall
- Michael Kirka
- Peter Wang
- Uday Vaidya
- Umesh N MARATHE
- Adam Stevens
- Alex Roschli
- Alex Walters
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Joseph Chapman
- Katie Copenhaver
- Nadim Hmeidat
- Nicholas Peters
- Rangasayee Kannan
- Trevor Aguirre
- Tyler Smith
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Brian Gibson
- Brittany Rodriguez
- Christopher Ledford
- Clay Leach
- Craig Blue
- Georges Chahine
- Hsuan-Hao Lu
- Jesse Heineman
- Jim Tobin
- John Lindahl
- Joseph Lukens
- Joshua Vaughan
- Luke Meyer
- Matt Korey
- Muneer Alshowkan
- Peeyush Nandwana
- Philip Bingham
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Udaya C Kalluri
- William Carter
- Xianhui Zhao
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alice Perrin
- Amber Hubbard
- Amit Shyam
- Anees Alnajjar
- Ben Lamm
- Brian Williams
- Cait Clarkson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charlie Cook
- Chelo Chavez
- Christopher Fancher
- Christopher Hershey
- Chris Tyler
- Claire Marvinney
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Diana E Hun
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Harper Jordan
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- John Potter
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Liam White
- Mariam Kiran
- Mark M Root
- Marm Dixit
- Merlin Theodore
- Michael Borish
- Nance Ericson
- Obaid Rahman
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Ryan Ogle
- Sana Elyas
- Sarah Graham
- Shajjad Chowdhury
- Srikanth Yoginath
- Thomas Feldhausen
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Varisara Tansakul
- Vladimir Orlyanchik
- William Peter
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.