Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Vincent Paquit
- Joseph Chapman
- Nicholas Peters
- Ryan Dehoff
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Philip Bingham
- Philip Boudreaux
- Stephen M Killough
- Akash Jag Prasad
- Anees Alnajjar
- Brian Williams
- Bryan Maldonado Puente
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Claire Marvinney
- Clay Leach
- Corey Cooke
- Costas Tsouris
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- James Haley
- James Parks II
- Jaydeep Karandikar
- Joel Asiamah
- Joel Dawson
- Mariam Kiran
- Mark M Root
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Srikanth Yoginath
- Varisara Tansakul
- Vladimir Orlyanchik
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.