Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rafal Wojda
- Prasad Kandula
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Hongbin Sun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vandana Rallabandi
- Vincent Paquit
- Alex Plotkowski
- Bryan Maldonado Puente
- Christopher Fancher
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Ilias Belharouak
- Marcio Magri Kimpara
- Mark M Root
- Michael Kirka
- Mostak Mohammad
- Nolan Hayes
- Obaid Rahman
- Omer Onar
- Peter Wang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Praveen Kumar
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Shajjad Chowdhury
- Subho Mukherjee
- Suman Debnath
- Vishaldeep Sharma

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.

The invention is related to the implementation of an bi-directional and isolated electric vehicle charger. The bidirectionality allows the electric vehicles to support the grid in case of disturbances thereby reducing the stress on the existing infrastructure.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Additively manufacturing of the windings with a conductor distributed in the cross-section according to the Hilbert curve provides many benefits as it allows for the reduction of the high-frequency losses due to the reduction of the effective winding conductor size.