Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Ilias Belharouak
- Chris Masuo
- Peter Wang
- Alex Walters
- Alexey Serov
- Ali Abouimrane
- Brian Gibson
- Jaswinder Sharma
- Joshua Vaughan
- Luke Meyer
- Marm Dixit
- Ruhul Amin
- Udaya C Kalluri
- William Carter
- Xiang Lyu
- Akash Jag Prasad
- Amit K Naskar
- Amit Shyam
- Ben LaRiviere
- Beth L Armstrong
- Brian Post
- Calen Kimmell
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gordon Robertson
- Holly Humphrey
- Hongbin Sun
- J.R. R Matheson
- James Szybist
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nihal Kanbargi
- Paul Groth
- Pradeep Ramuhalli
- Riley Wallace
- Ritin Mathews
- Ritu Sahore
- Todd Toops
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang
- Yaocai Bai
- Zhijia Du

Gas metal arc welding (GMAW) wire arc additive manufacturing (WAAM) processes use inert shielding to protect the weld arc during material deposition, but do not protect the trailing bead, which can lead to weld issues varying from low finish quality to diminished material prop

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.