Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Alexey Serov
- Ali Abouimrane
- Hsuan-Hao Lu
- Jaswinder Sharma
- Jonathan Willocks
- Joseph Lukens
- Marm Dixit
- Muneer Alshowkan
- Nance Ericson
- Ruhul Amin
- Xiang Lyu
- Alexander I Wiechert
- Amit K Naskar
- Anees Alnajjar
- Benjamin Manard
- Ben LaRiviere
- Beth L Armstrong
- Brian Williams
- Charles F Weber
- Claire Marvinney
- Costas Tsouris
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Govindarajan Muralidharan
- Harper Jordan
- Holly Humphrey
- Hongbin Sun
- Isaac Sikkema
- James Szybist
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Junbin Choi
- Khryslyn G Araño
- Kunal Mondal
- Logan Kearney
- Lu Yu
- Mahim Mathur
- Mariam Kiran
- Matt Vick
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mingyan Li
- Nihal Kanbargi
- Oscar Martinez
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Rose Montgomery
- Sam Hollifield
- Srikanth Yoginath
- Thomas R Muth
- Todd Toops
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma
- Yaocai Bai
- Zhijia Du

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.