Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Amit Shyam
- Alex Plotkowski
- Joseph Chapman
- Nicholas Peters
- Alexey Serov
- Ali Abouimrane
- Hsuan-Hao Lu
- James A Haynes
- Jaswinder Sharma
- Joseph Lukens
- Marm Dixit
- Muneer Alshowkan
- Ruhul Amin
- Ryan Dehoff
- Sumit Bahl
- Xiang Lyu
- Adam Stevens
- Alice Perrin
- Amit K Naskar
- Andres Marquez Rossy
- Anees Alnajjar
- Ben LaRiviere
- Beth L Armstrong
- Brian Post
- Brian Williams
- Christopher Fancher
- David L Wood III
- Dean T Pierce
- Gabriel Veith
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jay Reynolds
- Jeff Brookins
- Jonathan Willocks
- Jovid Rakhmonov
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Mariam Kiran
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nicholas Richter
- Nihal Kanbargi
- Paul Groth
- Peeyush Nandwana
- Peter Wang
- Pradeep Ramuhalli
- Rangasayee Kannan
- Ritu Sahore
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Todd Toops
- William Peter
- Yaocai Bai
- Ying Yang
- Yukinori Yamamoto
- Zhijia Du

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.