Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Amit K Naskar
- Jaswinder Sharma
- Joseph Chapman
- Nicholas Peters
- Alexey Serov
- Ali Abouimrane
- Hsuan-Hao Lu
- Joseph Lukens
- Logan Kearney
- Marm Dixit
- Michael Toomey
- Muneer Alshowkan
- Nihal Kanbargi
- Ruhul Amin
- Xiang Lyu
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben LaRiviere
- Beth L Armstrong
- Brian Williams
- Christopher Bowland
- David L Wood III
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Lu Yu
- Mariam Kiran
- Meghan Lamm
- Michelle Lehmann
- Nance Ericson
- Paul Groth
- Pradeep Ramuhalli
- Ritu Sahore
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Todd Toops
- Uvinduni Premadasa
- Vera Bocharova
- Yaocai Bai
- Zhijia Du

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.