Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Omer Onar
- Subho Mukherjee
- Vivek Sujan
- Mostak Mohammad
- Vandana Rallabandi
- Erdem Asa
- Shajjad Chowdhury
- Burak Ozpineci
- Emrullah Aydin
- Jon Wilkins
- Adam Siekmann
- Gui-Jia Su
- Hongbin Sun
- Prashant Jain
- Veda Prakash Galigekere
- Alexander I Wiechert
- Ali Riza Ekti
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brandon A Wilson
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Costas Tsouris
- Eddie Lopez Honorato
- Fred List III
- Govindarajan Muralidharan
- Hong Wang
- Hsin Wang
- Hyeonsup Lim
- Ian Greenquist
- Ilias Belharouak
- Isaac Sikkema
- Isabelle Snyder
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Keith Carver
- Kunal Mondal
- Lingxiao Xue
- Mahim Mathur
- Matt Kurley III
- Matt Vick
- Mike Zach
- Mingyan Li
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Nithin Panicker
- Oscar Martinez
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Rafal Wojda
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Sam Hollifield
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This invention proposes a Honeycomb-DD coupling structure that addresses the shortcomings of the conventional honeycomb coil array and gathering the advantage of DD and honeycomb designs advantages in a single design.

Wireless charging systems need to operate at high frequency, at or near resonance, to maximize power transfer distance and efficiency. High voltages appear across the inductors and capacitors. The use of discrete components reduces efficiency, increases system complexity.

Pairing hybrid neural network modeling techniques with artificial intelligence, or AI, controls has resulted in a unique hybrid system that creates a smart solution for traffic-signal timing.

Current fuel used in nuclear light water reactors that generate energy for the grid use a solid form of uranium that is heated and processed to form pellets.

This technology is a strategy for decreasing electromagnetic interference and boosting signal fidelity for low signal-to-noise sensors transmitting over long distances in extreme environments, such as nuclear energy generation applications, particularly for particle detection.