Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Joseph Chapman
- Nicholas Peters
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Hsuan-Hao Lu
- Joseph Lukens
- Josh Michener
- Kuntal De
- Muneer Alshowkan
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Alexander I Wiechert
- Alex Roschli
- Alex Walters
- Anees Alnajjar
- Austin Carroll
- Benjamin Manard
- Brian Sanders
- Brian Williams
- Charles F Weber
- Chris Masuo
- Clay Leach
- Costas Tsouris
- Daniel Jacobson
- Debjani Pal
- Erin Webb
- Evin Carter
- Gerald Tuskan
- Govindarajan Muralidharan
- Ilenne Del Valle Kessra
- Isaac Sikkema
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Mcfarlane
- Joanna Tannous
- John F Cahill
- Jonathan Willocks
- Joseph Olatt
- Kitty K Mccracken
- Kunal Mondal
- Kyle Davis
- Liangyu Qian
- Mahim Mathur
- Mariam Kiran
- Matt Vick
- Mengdawn Cheng
- Mingyan Li
- Nandhini Ashok
- Oluwafemi Oyedeji
- Oscar Martinez
- Paul Abraham
- Paula Cable-Dunlap
- Rose Montgomery
- Sam Hollifield
- Serena Chen
- Soydan Ozcan
- Thomas R Muth
- Tyler Smith
- Vandana Rallabandi
- Venugopal K Varma
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.