Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Stephen M Killough
- Anees Alnajjar
- Brian Williams
- Bruce Moyer
- Bryan Maldonado Puente
- Claire Marvinney
- Corey Cooke
- Debjani Pal
- Diana E Hun
- Harper Jordan
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- John Holliman II
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mariam Kiran
- Nance Ericson
- Nolan Hayes
- Peter Wang
- Philip Boudreaux
- Ryan Kerekes
- Sally Ghanem
- Srikanth Yoginath
- Varisara Tansakul

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.