Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Yaosuo Xue
- Bruce Moyer
- Callie Goetz
- Christopher Hobbs
- Debjani Pal
- Eddie Lopez Honorato
- Fei Wang
- Fred List III
- Jeffrey Einkauf
- Jennifer M Pyles
- Justin Griswold
- Keith Carver
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Kurley III
- Mike Zach
- Padhraic L Mulligan
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Sandra Davern
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Thomas Butcher
- Tyler Gerczak
- Yonghao Gui

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.