Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Yong Chae Lim
- Hongbin Sun
- Rangasayee Kannan
- Adam Stevens
- Brian Post
- Bruce Moyer
- Bryan Lim
- Debjani Pal
- Ilias Belharouak
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mike Zach
- Padhraic L Mulligan
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Roger G Miller
- Ruhul Amin
- Ryan Dehoff
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Vishaldeep Sharma
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.