Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Ali Passian
- Joseph Chapman
- Nicholas Peters
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Hsuan-Hao Lu
- Joseph Lukens
- Mike Zach
- Muneer Alshowkan
- Philip Bingham
- Ryan Dehoff
- Vincent Paquit
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Brad Johnson
- Brian Williams
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Claire Marvinney
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mariam Kiran
- Mark M Root
- Michael Kirka
- Nance Ericson
- Nedim Cinbiz
- Obaid Rahman
- Padhraic L Mulligan
- Philip Boudreaux
- Sandra Davern
- Srikanth Yoginath
- Tony Beard
- Varisara Tansakul

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.