Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Venugopal K Varma
- Mahabir Bhandari
- Mike Zach
- Stephen M Killough
- Adam Aaron
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Bryan Maldonado Puente
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Corey Cooke
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Diana E Hun
- Govindarajan Muralidharan
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Nedim Cinbiz
- Nolan Hayes
- Padhraic L Mulligan
- Peter Wang
- Philip Boudreaux
- Rose Montgomery
- Ryan Kerekes
- Sally Ghanem
- Sandra Davern
- Sergey Smolentsev
- Thomas R Muth
- Tony Beard

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).