Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Mike Zach
- Stephen M Killough
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Christopher Rouleau
- Corey Cooke
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Diana E Hun
- Gautam Malviya Thakur
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Gaboardi
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- John Holliman II
- John Lindahl
- Jong K Keum
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Mina Yoon
- Nedim Cinbiz
- Nolan Hayes
- Padhraic L Mulligan
- Peter Wang
- Philip Boudreaux
- Radu Custelcean
- Ryan Kerekes
- Sally Ghanem
- Sandra Davern
- Todd Thomas
- Tony Beard
- Xiuling Nie

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.