Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Yong Chae Lim
- Ali Abouimrane
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Rangasayee Kannan
- Ruhul Amin
- Sam Hollifield
- Travis Humble
- Adam Stevens
- Brian Post
- Brian Weber
- Bryan Lim
- David L Wood III
- Georgios Polyzos
- Hongbin Sun
- Isaac Sikkema
- Jaswinder Sharma
- Jiheon Jun
- Joseph Olatt
- Junbin Choi
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Lu Yu
- Mahim Mathur
- Marm Dixit
- Mary A Adkisson
- Oscar Martinez
- Peeyush Nandwana
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Samudra Dasgupta
- Sarah Graham
- Sudarsanam Babu
- T Oesch
- Tomas Grejtak
- William Peter
- Yaocai Bai
- Yiyu Wang
- Yukinori Yamamoto
- Zhijia Du
- Zhili Feng

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.