Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Chad Steed
- Hongbin Sun
- Jaswinder Sharma
- Junghoon Chae
- Marm Dixit
- Mingyan Li
- Prashant Jain
- Ruhul Amin
- Sam Hollifield
- Travis Humble
- Xiang Lyu
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Brian Weber
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Ian Greenquist
- Isaac Sikkema
- James Szybist
- Jonathan Willocks
- Joseph Olatt
- Junbin Choi
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Lu Yu
- Mahim Mathur
- Mary A Adkisson
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nate See
- Nihal Kanbargi
- Nithin Panicker
- Oscar Martinez
- Paul Groth
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ritu Sahore
- Samudra Dasgupta
- Todd Toops
- T Oesch
- Vishaldeep Sharma
- Vittorio Badalassi
- Yaocai Bai
- Zhijia Du

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and