Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Joseph Chapman
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Nicholas Peters
- Hongbin Sun
- Hsuan-Hao Lu
- Joseph Lukens
- Kyle Kelley
- Muneer Alshowkan
- Prashant Jain
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Brian Williams
- Gerd Duscher
- Ian Greenquist
- Ilias Belharouak
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Nate See
- Neus Domingo Marimon
- Nithin Panicker
- Olga S Ovchinnikova
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Sai Mani Prudhvi Valleti
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Vishaldeep Sharma
- Vittorio Badalassi

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.