Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Chad Steed
- Junghoon Chae
- Mike Zach
- Mingyan Li
- Sam Hollifield
- Sergiy Kalnaus
- Travis Humble
- Andrew F May
- Ben Garrison
- Beth L Armstrong
- Brad Johnson
- Brian Weber
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Georgios Polyzos
- Hsin Wang
- Isaac Sikkema
- James Klett
- Jaswinder Sharma
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Joseph Olatt
- Justin Griswold
- Kevin Spakes
- Kunal Mondal
- Kuntal De
- Laetitia H Delmau
- Lilian V Swann
- Luke Koch
- Luke Sadergaski
- Mahim Mathur
- Mary A Adkisson
- Nancy Dudney
- Nedim Cinbiz
- Oscar Martinez
- Padhraic L Mulligan
- Samudra Dasgupta
- Sandra Davern
- T Oesch
- Tony Beard

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.