Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sergei V Kalinin
- Sudarsanam Babu
- Thomas Feldhausen
- Vlastimil Kunc
- Yousub Lee
- Ahmed Hassen
- Anton Ievlev
- Bogdan Dryzhakov
- Dan Coughlin
- Jim Tobin
- Josh Crabtree
- Kevin M Roccapriore
- Kim Sitzlar
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Merlin Theodore
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ramanan Sankaran
- Stephen Jesse
- Steven Guzorek
- Steven Randolph
- Subhabrata Saha
- Vimal Ramanuj
- Vipin Kumar
- Wenjun Ge
- Yongtao Liu

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.