Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Blane Fillingim
- Brian Post
- Diana E Hun
- Lauren Heinrich
- Peeyush Nandwana
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Sudarsanam Babu
- Thomas Feldhausen
- Vincent Paquit
- Yousub Lee
- Bruce Moyer
- Bryan Maldonado Puente
- Corey Cooke
- Debjani Pal
- Gina Accawi
- Gurneesh Jatana
- Jeffrey Einkauf
- Jennifer M Pyles
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Michael Kirka
- Mike Zach
- Nolan Hayes
- Obaid Rahman
- Padhraic L Mulligan
- Peter Wang
- Ramanan Sankaran
- Ryan Kerekes
- Sally Ghanem
- Sandra Davern
- Vimal Ramanuj
- Wenjun Ge

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).