Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ali Passian
- Rafal Wojda
- Joseph Chapman
- Nicholas Peters
- Prasad Kandula
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Vandana Rallabandi
- Alexander I Wiechert
- Alex Plotkowski
- Anees Alnajjar
- Brian Williams
- Christopher Fancher
- Claire Marvinney
- Costas Tsouris
- Debangshu Mukherjee
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Marcio Magri Kimpara
- Mariam Kiran
- Md Inzamam Ul Haque
- Mostak Mohammad
- Nance Ericson
- Olga S Ovchinnikova
- Omer Onar
- Praveen Kumar
- Radu Custelcean
- Shajjad Chowdhury
- Srikanth Yoginath
- Subho Mukherjee
- Suman Debnath
- Varisara Tansakul

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.