Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Mingyan Li
- Sam Hollifield
- Alexander I Wiechert
- Brian Weber
- Costas Tsouris
- Dali Wang
- Debangshu Mukherjee
- Gs Jung
- Gyoung Gug Jang
- Isaac Sikkema
- Jian Chen
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Oscar Martinez
- Radu Custelcean
- T Oesch
- Wei Zhang
- Zhili Feng

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.