Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Ying Yang
- Adam Willoughby
- Ali Abouimrane
- Bruce A Pint
- Edgar Lara-Curzio
- Rishi Pillai
- Ruhul Amin
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alice Perrin
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Charles Hawkins
- Christopher Ledford
- David L Wood III
- Eric Wolfe
- Frederic Vautard
- Georgios Polyzos
- Hongbin Sun
- Jaswinder Sharma
- Jiheon Jun
- Junbin Choi
- Lu Yu
- Marie Romedenne
- Marm Dixit
- Meghan Lamm
- Michael Kirka
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Priyanshi Agrawal
- Ryan Dehoff
- Shajjad Chowdhury
- Tim Graening Seibert
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yaocai Bai
- Yong Chae Lim
- Zhijia Du
- Zhili Feng

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

The proposed solid electrolyte can solve the problem of manufacturing solid electrolyte when heating and densifying the solid electrolyte powder. The material can avoid also the use of solid electrolyte additive with cathode to prepare a catholyte.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance