Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Edgar Lara-Curzio
- Joseph Chapman
- Nicholas Peters
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Frederic Vautard
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Logan Kearney
- Michael Toomey
- Muneer Alshowkan
- Nihal Kanbargi
- Rishi Pillai
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alice Perrin
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Williams
- Charles Hawkins
- Christopher Bowland
- Christopher Ledford
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- Jiheon Jun
- Mariam Kiran
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Robert E Norris Jr
- Ryan Dehoff
- Santanu Roy
- Shajjad Chowdhury
- Sumit Gupta
- Tim Graening Seibert
- Tolga Aytug
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.