Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Benjamin Manard
- Cyril Thompson
- James A Haynes
- Ryan Dehoff
- Sumit Bahl
- Yaosuo Xue
- Adam Stevens
- Alexander I Wiechert
- Alice Perrin
- Andres Marquez Rossy
- Brian Post
- Charles F Weber
- Christopher Fancher
- Costas Tsouris
- Dean T Pierce
- Fei Wang
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Joanna Mcfarlane
- Jonathan Willocks
- Jovid Rakhmonov
- Matt Vick
- Nicholas Richter
- Peeyush Nandwana
- Peter Wang
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sreenivasa Jaldanki
- Sudarsanam Babu
- Suman Debnath
- Sunil Subedi
- Sunyong Kwon
- Vandana Rallabandi
- William Peter
- Ying Yang
- Yonghao Gui
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.