Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Benjamin Manard
- Isabelle Snyder
- Cyril Thompson
- Emilio Piesciorovsky
- Mike Zach
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Alexander I Wiechert
- Ali Riza Ekti
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Matt Vick
- Nedim Cinbiz
- Nils Stenvig
- Ozgur Alaca
- Padhraic L Mulligan
- Raymond Borges Hink
- Sandra Davern
- Subho Mukherjee
- Tony Beard
- Vandana Rallabandi
- Viswadeep Lebakula
- Vivek Sujan
- Yarom Polsky

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.