Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Peter Wang
- Alex Walters
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Nicholas Peters
- Tomonori Saito
- Brian Gibson
- Ethan Self
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Joshua Vaughan
- Luke Meyer
- Muneer Alshowkan
- Robert Sacci
- Sergiy Kalnaus
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Amit Shyam
- Andrew G Stack
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Brian Williams
- Calen Kimmell
- Chanho Kim
- Chelo Chavez
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Felipe Polo Garzon
- Georgios Polyzos
- Gordon Robertson
- Ilias Belharouak
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Mariam Kiran
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Riley Wallace
- Ritin Mathews
- Sai Krishna Reddy Adapa
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Xiang Lyu
- Xiaohan Yang

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.