Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ali Passian
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Beth L Armstrong
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Nicholas Peters
- Robert Sacci
- Tomonori Saito
- Ethan Self
- Hsuan-Hao Lu
- Jaswinder Sharma
- Joseph Lukens
- Muneer Alshowkan
- Sergiy Kalnaus
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Williams
- Chanho Kim
- Claire Marvinney
- Felipe Polo Garzon
- Georgios Polyzos
- Harper Jordan
- Ilias Belharouak
- Joel Asiamah
- Joel Dawson
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Mariam Kiran
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Sai Krishna Reddy Adapa
- Srikanth Yoginath
- Varisara Tansakul
- Vera Bocharova
- Xiang Lyu

Nearly all electrochemical approaches to CO2 conversion rely on traditional fuel cell type electrocatalysis where CO2 is bubbled through acidic or basic media. The resulting electrochemistry leads to excessive generation of H2 over micromoles of CO2 conversion.

This invention provides a method for differentiating if the cell is failing due to chemical/mechanical factors or due to Li dendrite formation by combing high throughput electronic measurement recording with fast data analysis to monitor the change of battery performance at th

Technologies directed quantum spectroscopy and imaging with Raman and surface-enhanced Raman scattering are described.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.

Early Transition Metal Stabilized High Capacity Oxidatively Stable Cathodes of Lithium-ion Batteries
The development of lithium-ion batteries (LIBs) is critical for advancing portable electronics, electric vehicles, and renewable energy storage solutions.