Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Jaswinder Sharma
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Tomonori Saito
- Ali Abouimrane
- Ethan Self
- Georgios Polyzos
- Robert Sacci
- Ruhul Amin
- Sergiy Kalnaus
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- David L Wood III
- Felipe Polo Garzon
- Hongbin Sun
- Juliane Weber
- Junbin Choi
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Marm Dixit
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Pradeep Ramuhalli
- Sai Krishna Reddy Adapa
- Vera Bocharova
- Xiang Lyu
- Yaocai Bai
- Zhijia Du

Electrolysis is common in the production of clean hydrogen used to produce other chemicals such as ammonia, based on heavy use of precious metals, not mined domestically. Typical electrolyzer components prone to degradation and are not suited for long-term durability.

Current battery materials such as silicon suffer from poor ion and electron transport due to non-optimal wiring. This invention facilitates particle interconnectedness to facilitate ion motion and electron transport overcoming poor assembly.

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

Adhesives for metal parts typically are liquid-based which require complex processing. This technology is a hot melt adhesive that is mixed and applied in a solid form and after the heating and cooling cycle creates strong bonds with the substrates in a matter of seconds.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

The invention addresses the long-standing challenge of inorganic phase change materials use in buildings envelope and other applications by encapsulating them in a secondary sheath.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.