Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Joseph Chapman
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Nicholas Peters
- Amit Shyam
- Blane Fillingim
- Brian Post
- Hsuan-Hao Lu
- Joseph Lukens
- Kyle Kelley
- Lauren Heinrich
- Muneer Alshowkan
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alex Plotkowski
- Andres Marquez Rossy
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Brian Williams
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Gerd Duscher
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Peter Wang
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Stephen Jesse
- Steven J Zinkle
- Sumner Harris
- Tim Graening Seibert
- Tomas Grejtak
- Utkarsh Pratiush
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.