Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Ilias Belharouak
- Alexey Serov
- Ali Abouimrane
- Chad Steed
- Jaswinder Sharma
- Junghoon Chae
- Marm Dixit
- Mingyan Li
- Ruhul Amin
- Sam Hollifield
- Travis Humble
- Xiang Lyu
- Amit K Naskar
- Ben LaRiviere
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Weber
- Christopher Rouleau
- Costas Tsouris
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hongbin Sun
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- James Szybist
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Junbin Choi
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Kyle Kelley
- Lilian V Swann
- Logan Kearney
- Luke Koch
- Lu Yu
- Mahim Mathur
- Mary A Adkisson
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Mina Yoon
- Nance Ericson
- Nihal Kanbargi
- Oscar Martinez
- Paul Groth
- Pradeep Ramuhalli
- Radu Custelcean
- Ritu Sahore
- Samudra Dasgupta
- Steven Randolph
- Todd Toops
- T Oesch
- Yaocai Bai
- Zhijia Du

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.