Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Joseph Chapman
- Kyle Kelley
- Nicholas Peters
- Rama K Vasudevan
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Sergei V Kalinin
- Stephen Jesse
- Alexandre Sorokine
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Williams
- Clinton Stipek
- Daniel Adams
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jessica Moehl
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Mariam Kiran
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Philipe Ambrozio Dias
- Saban Hus
- Steven Randolph
- Taylor Hauser
- Viswadeep Lebakula
- Yongtao Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.