Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Ali Passian
- Joseph Chapman
- Kyle Kelley
- Nicholas Peters
- Rama K Vasudevan
- Hsuan-Hao Lu
- Joseph Lukens
- Mike Zach
- Muneer Alshowkan
- Sergei V Kalinin
- Stephen Jesse
- An-Ping Li
- Andrew F May
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Ben Garrison
- Bogdan Dryzhakov
- Brad Johnson
- Brian Williams
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Claire Marvinney
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Harper Jordan
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- James Klett
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Jewook Park
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Justin Griswold
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Mariam Kiran
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nance Ericson
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Padhraic L Mulligan
- Saban Hus
- Sandra Davern
- Srikanth Yoginath
- Steven Randolph
- Tony Beard
- Varisara Tansakul
- Yongtao Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.