Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Costas Tsouris
- Mike Zach
- Vincent Paquit
- Akash Jag Prasad
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Bruce Moyer
- Calen Kimmell
- Canhai Lai
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Chris Tyler
- Clay Leach
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- James Haley
- James Klett
- James Parks II
- Jaydeep Karandikar
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Louise G Evans
- Luke Sadergaski
- Matt Vick
- Nedim Cinbiz
- Padhraic L Mulligan
- Richard L. Reed
- Ryan Dehoff
- Sandra Davern
- Tony Beard
- Vandana Rallabandi
- Vladimir Orlyanchik
- Zackary Snow

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

An innovative low-cost system for in-situ monitoring of strain and temperature during directed energy deposition.