Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Chad Steed
- Diana E Hun
- Junghoon Chae
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Travis Humble
- Vincent Paquit
- Annetta Burger
- Brian Sanders
- Bryan Maldonado Puente
- Carter Christopher
- Chance C Brown
- Corey Cooke
- Debraj De
- Gautam Malviya Thakur
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Gaboardi
- Jeff Foster
- Jerry Parks
- Jesse McGaha
- John F Cahill
- John Holliman II
- Josh Michener
- Kevin Sparks
- Liangyu Qian
- Liz McBride
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Paul Abraham
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Samudra Dasgupta
- Todd Thomas
- Vilmos Kertesz
- Xiaohan Yang
- Xiuling Nie
- Yang Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).