Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Srikanth Yoginath
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Hsuan-Hao Lu
- James J Nutaro
- Joseph Lukens
- Luke Meyer
- Muneer Alshowkan
- Pratishtha Shukla
- Rangasayee Kannan
- Sudip Seal
- Adam Stevens
- Alex Walters
- Ali Passian
- Amy Elliott
- Anees Alnajjar
- Brian Williams
- Bryan Lim
- Cameron Adkins
- Erin Webb
- Evin Carter
- Harper Jordan
- Isha Bhandari
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Mariam Kiran
- Michael Borish
- Nance Ericson
- Oluwafemi Oyedeji
- Pablo Moriano Salazar
- Peeyush Nandwana
- Peter Wang
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tomas Grejtak
- Tyler Smith
- Varisara Tansakul
- William Peter
- Xianhui Zhao
- Yiyu Wang
- Yukinori Yamamoto

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.